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1 Background

1.1 CFTs and VOAs

Quantum field theory (QFT) has become a unifying framework in modern mathemat-
ics, providing deep conceptual bridges among geometry, topology, analysis, representation
theory, and tensor category theory, which has been more and more significant in modern
physics and mathematics. Topological field theory (TFT) and two-dimensional confor-
mal field theory (CFT, ‘two-dimensional’ will be omitted hereafter) are two types of QFT
that are mathematically well-defined and well-studied. In 1987, Kontsevich and Segal in-
dependently gave a precise definition of full CFT using the properties of path integrals as
axioms. Segal further introduced modular functors and weak conformal field theories. In
1988, Moore and Seiberg formulated certain basic hypotheses for rational CFT and derived
some important consequences in [MS]. It has been a long-standing open problem to construct
chiral and full CFTs in the sense of Kontsevich and Segal.

In TFT, the notion of vector space, Frobenius algebra, and modular tensor category
provide the underlying algebraic/categorical structure of one, two, and three-dimensional
TFT. Analogously, the algebra of intertwining operators among modules for a vertex
operator algebra (VOA) is the underlying algebraic structure of the two-dimensional chiral
CFT. Therefore, the study of CFTs can be largely converted to the study of VOAs and their
representation theory. Systematic study of VOAs and their representation theory was started
by Frenkel, Lepowsky, Meurman ([FLM4]), and Borcherds ([B]). Highly roughly speaking, a
vertex operator algebra is a Z-graded vector space V =

∑
n∈Z V(n), together with a particular

element 1 ∈ V , called the vacuum, and a binary product Y (−, x)−, called vertex operator,
whose outputs are formal Laurent series, i.e., Y (u, x)v ∈ V ((x)) for u, v ∈ V . It satisfies
certain axioms, including the most important one, Jacobi identity (See (2.1)).

Based on the results in [HL2], [HL3], [HL4], [H1], [H3], [H4], and [H5], Huang proved the
following theorem in [H6]:

Theorem 1.1. Let V be a simple vertex operator algebra satisfying the following conditions:

1. For n < 0, V(n) = 0; V(0) = C1; and as a V -module, V is equivalent to its contragredient
V -module V ′.

2. Every lower-bounded generalized V -module is completely reducible.

3. V is C2-cofinite.
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Then the category of V -modules has a natural structure of modular tensor category in the
sense of Turaev [Tu1].

(Remark: Without having precise definitions of VOA and modular tensor category, mod-
ular tensor categories associated to conformal field theories were discovered first in physics
by Moore and Seiberg [MS].)

1.2 Orbifold conformal field theory

Orbifold CFTs are CFTs constructed from known theories and their automorphisms. The
first example of orbifold CFT is the the moonshine module VOA V ♮ constructed by Frenkel,
Lepowsky and Meurman [FLM2] [FLM3] [FLM4] in mathematics. The automorphism group
of V ♮ is the Monster finite simple group. Their construction of V ♮ played a significant role
in Borcherds’ proof of Conway–Norton Conjecture, profoundly relating number theory and
finite group theory. It did so by introducing a new string theory, which was later interpreted
by physicists as an “orbifold” theory. In string theory, the more generally systematic study
of orbifold CFTs was subsequently started by Dixon, Harvey, Vafa and Witten [DHVW1]
[DHVW2]. See [H14] for an exposition of general results, conjectures and open problems in
the construction of orbifold CFTs using the approach of the representation theory of vertex
operator algebras.

It is natural to expect that Theorem 1.1 has generalizations in orbifold CFT.
In [K3], Kirillov Jr. stated that the category of g-twisted modules for a vertex operator

algebra V for g in a finite subgroup G of the automorphism group of V is a G-equivariant
fusion category (G-crossed braided (tensor) category in the sense of Turaev [Tu2]). For
general V , this is certainly not true. The vertex operator algebra V must satisfy certain
conditions. Here is a precise conjecture formulated by Huang in [H9]:

Conjecture 1.2. Let V be a vertex operator satisfying the three conditions in Theorem 1.1
and let G be a finite group of automorphisms of V . Then the category of g-twisted V -modules
for all g ∈ G is a G-crossed braided tensor category.

We also conjecture that the category of g-twisted V -modules for all g ∈ G is a G-crossed
modular tensor category in a suitable sense. Since the definitions of G-crossed modular
tensor category in [K3] and [Tu2] are different, more work needs to be done to find out
which definition is the correct one for the category of twisted modules for a vertex operator
algebra. But we do believe that this stronger G-crossed modular tensor category conjecture
should be true in a suitable sense.

In the case that G is trivial (the group containing only the identity), Conjecture 1.2
and even the stronger G-crossed modular tensor category conjecture is true by Theorem
1.1. Thus the G-crossed modular tensor category conjecture is a natural generalization of
Theorem 1.1 to the category of category of g-twisted V -modules for g ∈ G.

In the case that the fixed point subalgebra V G of V under G satisfies the conditions in
Theorem 1.1 above, the category of V G-modules is a modular tensor category. In this case,
Conjecture 1.2 can be proved using the modular tensor category structure on the category
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of V G-modules and the results on tensor categories by Kirillov Jr. [K1] [K2] [K3] and Müger
[Mü1] [Mü2]. In the special case that G is a finite cyclic group and V satisfies the conditions
in Theorem 1.1, Carnahan-Miyamoto [CM] proved that V G also satisfies the conditions in
Theorem 1.1. In the case that G is a finite cyclic group and V is in addition a holomorphic
vertex operator algebra (meaning that the only irreducible V -module is V itself), Conjecture
1.2 can be obtained as a consequence of the results of van Ekeren-Möller-Scheithauer [EMS]
and Möller [Mö] on the modular tensor category of V G-modules. Assuming that G is a
finite group containing the parity involution and that the category of grading-restricted V G-
modules has a natural structure of vertex tensor category structure in the sense of [HL1],
McRae [Mc] constructed a nonsemisimple G-crossed braided tensor category structure on
the category of grading-restricted (generalized) g-twisted V -modules.

For general finite group G, the conjecture that the fixed point subalgebra V G of V under
G also satisfies the conditions in Theorem 1.1 is still open and seems to be a difficult problem.
On the other hand, using twisted modules and twisted intertwining operators to construct
G-crossed braided tensor categories seems to be a more conceptual and direct approach. If
this approach works, we expect that the category of V G-modules can also be studied using
the G-crossed braided tensor category structure on the category of twisted V -modules.

In the case that the vertex operator algebra V does not satisfy the three conditions in
Theorem 1.1 and/or the group G is not finite, it is not even clear what the precise conjecture
should be. This was proposed as an open problem in [H9].

2 What I have done

In brief, I proved the associativity of twisted intertwining operators, under
some convergence and extension assumption. This is equivalent to a construction of
the associativity isomorphism in the G-crossed vertex/braided tensor category,
which is a main difficulty in proving Conjecture 1.2. (Another main difficulty is to prove the
assumptions I need; see [Ta].)

To achieve this, I have done the following:

• 2.1 Systematic development of a complex analytic approach to VOA theory
(in [DH] and [D])

Starting from Frenkel, Lepowsky, Meurman ([FLM4]), classical study of VOAs
and their representation theory is based on an algebraic approach - formal series (most
generally, the exponent can be any element in a field F with charF = 0). This algebraic
approach has been fully developed in the last 40 years and been used to successfully
solve many problems. The Jacobi identity (in the definition of VOA),

x−1
0 δ

(
x1 − x2

x0

)
Y (u, x1)Y (v, x2)− x−1

0 δ

(
−x2 + x1

x0

)
Y (v, x2)Y (u, x1)

= x−1
2 δ

(
x1 − x0

x2

)
Y (Y (u, x0) v, x2) , (2.1)
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is powerful enough to derive many useful results. Importantly, not only VOA itself,
but also the (generalized) modules of VOA and the notion of intertwining operators
among (generalized) modules also can be defined using a Jacobi identity similar to
(2.1). The Jacobi identity is the algebraic expression which is equivalent to the fact
that the sum of residues of certain meromorphic functions on the Riemmann sphere Ĉ
at all singularities is zero (Cauchy formula).

In classical (i.e. untwisted) theory, the algebraic formulation is not enough to
study products and iterates of more than one intertwining operator, for example,
Y1(w1, z1)Y2(w2, z2) and Y3(Y4(w1, z1 − z2)w2, z2). The study of these objects is indis-
pensable and vital for construction of the vertex (therefore braided) tensor category.
Essentially, we can no longer have a Jacobi identity in this case, because the correlation
functions are multivalued in both varibles z1 and z2, which means one can no longer get
a single-valued meromorphic 1-form on Ĉ. Therefore, coefficients in expansions at dif-
ferent singularities cannot have a relation (Jacobi identity) by simply using the Cauchy
formula. This is where Huang ([H1]) and Huang, Lepowsky, Zhang ([HLZ4]) had to
introduce some complex analytic assumptions (convergence and extension properties)
to go further. These assumptions must be satisfied to have their result (i.e. the vertex
tensor category and in particular, the braided tensor category structure on the module
category), and also were proved (for nice VOAs and C1-cofinite modules) using regular
singular differential equation theory by Huang ([H3]).

Despite the involvedness of these complex analytic assumptions, Huang-Lepowsky’s
and Huang-Lepowsky-Zhang’s work mainly used the algebraic approach. This is natu-
ral - one should always use algebraic approach whenever “they can”, i.e., when there is
a Jacobi identity to use, because althrough often lengthy and technical, formal calculus
is rather mechanical - one can get results by direct and standard computation.

However, in the study of orbifold CFT, a systematic complex-analytic approach in-
evitably needed to be developed. This is because even for the vertex operator YW (−, x)
acting on modules, there are non-integer powers of x (and log x for g-twisted modules
with infinite order automorphim g). This leads to an extra multivalueness, which makes
it impossible to write down a Jacobi identity as the definition of twisted intertwining
operators (i.e., intertwining operators among three twisted modules). Geometrically
speaking, this means we cannot have a single valued meromorphic 1-form on Ĉ even
for a product like YW (v, z1)Y(w1, z2)w2. Instead, we have to use a duality as the
definition of twisted intertwining operator, which is a complex analytic statement.

The “definition” of the “complex analytic approach to VOA (orbifold theory)”
could be:

Starting from the duality version of the definitions of (twisted) module and
(twisted) intertwining operator, develop the (twisted) representation theory
of VOA, without using formal delta function, Jacobi identity, and Cauchy
formula.
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Under this definition, because of its inevitability in the study of orbifold theory, we
have systematically developed this complex analytic approach.

• 2.2 Introduced the most general notion of twisted intertwining operatortexsssssst
(in [DH] and [D])

Intertwining operators among twisted modules associated to commuting auto-
morphisms of finite order appeared implicitly in the work [FFR] of Feingold, Frenkel
and Ries and were introduced explicitly by Xu in [X] in terms of a generalization of the
Jacobi identity for twisted modules. Xu’s Jacobi identity works because in [X], only
modules twisted by automorphisms in a finite abelian group are considered.

In [H8], Huang introduced a definition of twisted intertwining operators among
modules twisted by noncommuting automorphisms. In this definition, the correlation
functions obtained from the products/iterates of a twisted intertwining operator and a
twisted vertex operator are required to be of a special explicit form. It turns out that
this definition is not general enough to study orbifold theory associated to a nonabelian
group of automorphisms.

We have introduced the most general notion of twisted intertwining operator,
where no explicit form needs to be satisfied. In this definition, the correlation functions
are multivalued functions whose single-valued branches are indexed by elements of the
fundamental group of some configuration space, and are determined only by the image
of an anti-homomorphism from the fundamental group to the group of automorphisms
⟨g1, g2⟩ generated by g1, g2 (if the twisted intertwining operator is of type

(
g1g2
g1 g2

)
). This

definition of twisted intertwining operator is general enough for studying the orbifold
theory associated to a nonabelian group of automorphisms. To give the correct notion
of P (z)-tensor product of twisted modules, we need to use the most general twisted
intertwining operators. If we use only a certain special set of twisted intertwining
operators as in [H8] to define and construct the P (z)-tensor products, we would obtain
a quotient of the correct P (z)-tensor products.

Moreover, based on our definition of twisted intertwining operator, we have
proved some properties of twisted intertwining operators which are essential for the
construction of G-braided vertex tensor categories. For example, we constructed the
skew-symmetry isomorphism Ω± and contragredient isomorphism A± between spaces
of twisted intertwining operators. Althrough these isomorphisms have occurred and
played crucial roles in the untwisted theory, since we used our most general notion
of intertwining operator, the proof of their existence was new and used the complex
analytic approach.

• 2.3 Construction and an equivalent condition for the P (z)-tensor product
(in [DH] and [D])

For any z ∈ C×, we have given a definition of the P (z) tensor productW1⊠P (z)W2

of two twisted modules W1 and W2 using a universal property. We have also given an
explicit construction of W1 ⊠P (z) W2 by using twisted intertwining operators. After
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having a suitable definition of twisted intertwining operator, the definition and the
explicit construction of W1 ⊠P (z) W2 are just a straightforward generalization of their
untwisted version in Huang, Lepowsky [HL2], [HL3], [HL4].

Based on the explicit construction of W1 ⊠P (z) W2 mentioned above, in [DH],
we have found an equivalent condition for a linear functional λ ∈ (W1 ⊗ W2)

∗ to be
contained in (W1 ⊠P (z) W2)

′. If the module category considered is the category of
grading restricted generalized g-twisted module for g ∈ G (where G ≤ Aut(V ) is any
finite group), then the statement is the following.

Theorem 2.1. Let the module category considered be the category of grading-restricted
generalized g-twisted modules for g ∈ G (where G ≤ Aut(V ) is any finite group).
Suppose λ ∈ (W1 ⊗W2)

∗. Then λ ∈ (W1 ⊠P (z) W2)
′ if and only if λ satisfies a suitable

P (z)-compatibility condition and a suitable P (z)-locally-grading-restriction condition.

(Remark: W1 ⊠P (z) W2 is dependent on the module category that is considered.)

We note that in the untwisted case, a P (z)-compatibility condition and a P (z)-
grading-restriction condition (see [HL4] and [HLZ3]) play an important role in the
proof of associativity (operator product expansion) of intertwining operators and in the
construction of the associativity isomorphisms for the vertex tensor category structure
(see [H1] and [HLZ5]).

Generalizing their idea of proving the associativity in the untwisted situation to
our twisted case has many obstructions. This is mainly because the untwisted inter-
twining opertaor is defined using the Jacobi identity, which is algebraic. The P (z)-
compatibility condition in [HLZ3] is a purely algebraic statement, which is invalid
under our notion of twisted intertwining operator and the complex analytic setting.
To solve this problem, we have introduced a new formulation of the P (z)-compatibility
condition, which is a complex-analytic statement. It looks very different from the alge-
braic version of P (z)-compatibility condition in [HLZ3]. Whether they are equivalent
when the twisted modules considered are actually untwisted is still unclear, which is
an interesting unsolved problem.

The complex analytic version of the P (z)-compatibility condition serves the same
function as the algebraic one, in the sense that we still can prove Theorem 2.1 under our
complex analytic setting (See [DH]). Again, since our notions of twisted intertwining
operator and P (z)-compatibility condition are very different, the method of proving
Theorem 2.1 is entirely new.

In [D], I have introduced a P (z)-C-embeddability condition, where C is the cate-
gory of twisted V -modules. Then we have:

Theorem 2.2. Denote by C the module category that is considered. Suppose λ ∈ (W1⊗
W2)

∗. Then λ ∈ (W1 ⊠P (z) W2)
′ if and only if λ satisfies both the P (z)-compatibility

condition and the P (z)-C-embeddability condition.
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Theorem 2.1 and 2.2 are crucial for proving the associativity of twisted inter-
twining operators. This is because they offer a feasible way to determine whether a
functional λ ∈ (W1 ⊗W2)

∗ is contained in the space (W1 ⊠P (z) W2)
′.

• 2.4 Proof of associativity of twisted intertwining operators (in [D])

Using P (z)-compatibility, Theorems 2.1/2.2, and all other tools that had been
developed, I have proved the associativity of twisted intertwining operators. The state-
ment is roughly the following:

Theorem 2.3. Fix z1, z2 ∈ C satisfying

0 < |z1 − z2| < |z2| < |z1|, (2.2)

|arg(z1)− arg(z2)| <
π

2
, |arg(z1 − z2)− arg(z1)| <

π

2
. (2.3)

Suppose that G ≤ Aut(V ), and C is a category of g-twisted generalized V -modules for
g ∈ G. If C satisfies certain conditions, then for any g1, g2, g3 ∈ G, and g1-, g2-,
g3-, g1g2g3-, g2g3-twisted modules W1, W2, W3, W4, M1 in C, and twisted intertwining
operators Y1, Y2 of types

(
W4

W1M1

)
,
(

M1

W2W3

)
, there exist a g1g2-twisted module M2 in C,

and twisted intertwining operators Y3, Y4 of types
(

W4

M2W3

)
,
(

M2

W1W2

)
, such that

⟨w′
4,Y1(w1, z1)Y2(w2, z2)w3⟩ = ⟨w′

4,Y3(Y4(w1, z1 − z2)w2, z2)w3⟩ , (2.4)

holds for any w1 ∈ W1, w2 ∈ W2, w3 ∈ W3, w
′
4 ∈ W ′

4.

Note that for the associtivity of untwisted intertwining operators, the restriction
(2.3) is not needed. However, due to the multivaluedness nature of orbifold theory,
(2.3) is needed. When (2.3) does not hold, one can still find some twisted intertwin-

ing operators Y3, Y4 such that (2.4) holds. But their types could be
( ϕh4

(W4)

M2 ϕh3
(W3)

)
,(

M2

ϕh1
(W1) ϕh2

(W2)

)
, for some hi ∈ G, i = 1, 2, 3, 4.

Theorem 2.3 directly leads to the national associativity isomorphisms in the vertex
tensor category:

Corollary 2.4. Fix z1, z2 ∈ C satisfying

0 < |z1 − z2| < |z2| < |z1|,

|arg(z1)− arg(z2)| <
π

2
, |arg(z1 − z2)− arg(z1)| <

π

2
.

Suppose C is a category satisfying the conditions referred to in Theorem 2.3. For
any g1, g2, g3 ∈ G, and g1-, g2-, g3-twisted modules W1, W2, W3 in C, we have the
isomorphism

W1 ⊠P (z1) (W2 ⊠P (z2) W3) −→ (W1 ⊠P (z1−z2) W2)⊠P (z2) W3, (2.5)

functorial in all three position.
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Together with the parallel transport isomorphism introduced in [HLZ7], we have
the associativity isomorphisms in the G-crossed braided tensor category:

Corollary 2.5. Suppose C is a category satisfying the conditions referred to in Theo-
rem 2.3. For any g1, g2, g3 ∈ G, and g1-, g2-, g3-twisted modules W1, W2, W3 in C, we
have the isomorphism

W1 ⊠P (1) (W2 ⊠P (1) W3) −→ (W1 ⊠P (1) W2)⊠P (1) W3, (2.6)

functorial in all three positions.

3 Future Research Plan

• 3.1 Finish the construction of G-crossed vertex/braided tensor category

To be a G-crossed vertex/braided tensor category, not only the ingredients - as-
sociativity isomorphisms, G-action and grading, G-crossed braiding isomorphism, etc,
- are needed, certain compatibility axioms including the pentagon/hexagon/triangle
axioms also need to be satisfied. After Corollary 2.4 and 2.5 have been proved, we
have all the ingredients. The next step is to prove these compatibility axioms.

We plan to complete this work in the near future as a joint project with my
advisor Yi-Zhi Huang, and Daniel Tan.

• 3.2 A generalized Jacobi identity for twisted intertwining operators

As mentioned in Section 2.1, unlike the untwisted case, when studying correla-
tion functions induced by ⟨w′

3, Y (v, z1)Y(w1, z2)w2⟩, because of the multivalueness of
Y (v, z1), one cannot get a single-valued meromorphic 1-form on Ĉ. This is the geo-
metric obstruction for obtaining a Jacobi identity using the Cauchy theorem. However,
one can have a branched covering space E of Ĉ, such that the multivalued function
(1-form) on Ĉ can be lifted to a single valued 1-form on E.

E

Ĉ C

single valued lifting

multivalued

As a generalization of the Cauchy theorem, in a compact Riemann surface, one
has the following theorem.

Theorem 3.1 (Global Residue Theorem). Let M be a compact Riemann surface, and
let S ⊂ M be a finite set of points in M . Let ω be a holomorphic 1-form on M \ S.
Then we have ∑

p∈S

Resp(ω) = 0. (3.7)
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Suppose Y is of type
(

W3

W1W2

)
, whereW1,W2,W3, are g1-, g2-, g1g2-twisted modules.

If ⟨g1, g2⟩ ≤ Aut(V ) is a finite group, to study ⟨w′
3, Y (v, z1)Y(w1, z2)w2⟩, the branched

covering space E can be taken to be a compact Riemann surface. This means that
we can get a single-valued correlation function on a compact Riemann surface so that
we can use Theorem 3.1. In this way, one can get a “generalized” Jacobi identity for
twisted intertwining operators for a finite automorphism group ⟨g1, g2⟩.

However, although this idea looks clear and feasible, some difficulties seem to
occur when ⟨g1, g2⟩ is nonabelian. Details still need to be written down to examine the
feasibility.

The importance of this work is that many results in untwisted VOA representation
theory are proved using the algebraic approach. The proof of these results under our
complex analytic setting is yet to be found. Once this work is done, it will be helpful
proving more results in the complex analytic setting.

For the one among these results most related to my program, see Section 3.3:

• 3.3 Proof of the convergence assumption

The products/iterates of untwisted intertwining operators among C1-cofinite mod-
ules are absolutely convergent and have the form of solutions of PDEs which have
regular singular points at certain points. This result was proved by Huang in [H3]
using the algebraic approach and regular singular differential equation theory. This is
essentially the conditions referred to in Theorem 2.3.

The original proof by Huang heavily relies on the Jacobi identity, which means
it is impossible to directly generalize to our twisted case. Once the work mentioned in
Section 3.2 is done, the convergence assumption will hopefully be proved.

Remark 3.2. If it goes well, this work will be done by my colleague and friend, Daniel
Tan. If it turns out to be much more difficult than expected, I will be interested in
doing this.

For a finite abelian group of automorphisms, Tan has already had this result due to the
fact that a Jacobi identity can be derived in this case. The more difficult and also more
interesting case is the finite (not necessarily abelian) group case.

• 3.4 Explore explicit examples of orbifold theory

Applying this whole theory to explicit examples will be very meaningful. In [H11],
Huang came up with a construction theorem of twisted modules, used this theorem
to construct a Verma-type twisted module M̂

[g]
B (By “Verma-type”, we mean that it

satisfies a universal property similar to classical Verma module). Moreover, under
certain suitable conditions, this module has a unique maximal proper submodule and
an irreducible quotient (See [H12]). These theorems make it possible to study twisted
intertwining operators among these twisted modules.
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The first explicit example worth trying would be the affine VOA Vĝ(l, 0). In
[H13], Huang explicit wrote down these Verma-type twisted modules for affine vertex
(operator) algebras. Moreover, Huang proved that these modules are equivalent to
suitable induced modules for the corresponding twisted affine Lie algebra, or quotients
of such induced modules, by explicitly given submodules. Therefore, we have many
useful tools to start explicitly studying the orbifold theory of affine VOAs, which will
hopefully inspire the study of the general theory.

Also, we need to explore non-abelian orbifold theories, since our theory works for
modules twisted by a non-abelian group. Gemünden and Keller studied some orbifolds
of holomorphic lattice vertex operator algebras for non-abelian finite automorphism
groups G in [GK]. Their work on these examples offers a place where we can apply
our theory.

• 3.5 Uniqueness conjecture of the moonshine module V ♮

Once Conjecture 1.2 is proved, it offers a strategy to study Frenkel, Lepowsky, and
Meurman’s famous uniqueness conjecture of the moonshine module VOA V ♮, which
has a history of over 40 years, and also is the last piece of the classification program
of holomorphic VOAs with central charge 24. This conjecture is the following.

Conjecture 3.3 (Uniqueness conjecture of V ♮). Let V be a VOA satisfying the follow-
ing three conditions:

1. V is the only irreducible module for itself.

2. V(1) = 0.

3. The central charge of V is 24.

Then V ∼= V ♮ (as VOAs).

As a weaker version of this conjecture, we have

Conjecture 3.4. Let V be a VOA satisfying the following conditions:

1. V satisfies conditions 1,2,3 in Conjecture 3.3.

2. V satisfies conditions 1,2,3 in Theorem 1.1 (and also Conjecture (1.2)).

Then V ∼= V ♮ (as VOAs).

The analogy between even lattices and (lattice) VOAs arose in one of the earliest literature
[FLM1], [FLM4] in VOA theory, which was generalized to the analogy between (positive
definite) lattices and completely-extendable conformal intertwining algebras (intertwining
operator algebra) by Huang in [H15]. Under the philosophy of this analogy, Lepowsky
announced, in a conference in Palo Alto, that Conway’s proof of the uniqueness theorem of
the Leech lattice Λ could be natural place to find inspiration. Conway’s proof was based on
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the essential fact that we have a natural embedding Λ ↪→ R24 (actually one has Λ ↪→ Q24)
from the lattice to Euclidean space. Therefore, one can work within the Euclidean space
rather than just the lattice. The space R24, as the ambient space of Λ, played a significant
role in Conway’s proof. To vaguely follow the same strategy as Conway, the first step
is to find an ambient structure for V which plays a similar role as the ambient
space R24 in Conway’s proof. Then, we should explore whether we can do some similar
things as Conway did.

However, what makes the uniqueness conjecture difficult to handle is its nature of “No
(easy) ambient structure”.

First, the philosophy “adding modules to enlarge the algebra” is invalid now - every
module is just direct sum of copies of V itself. If we regard the vertex tensor category
V -Mod (or one can say the corresponding intertwining operator algebra) as an ambient
structure of V , this ambient structure is as small as V itself.

Second, suppose that V is a VOA such that V(n) = 0 if n < 0, and V(0) = C1 (condition
1. in Conjecture 1.2). If V(1) ̸= 0, then V(1) with [a, b] := a0b forms a Lie algebra g, and the
equation a1b = ⟨a, b⟩V 1 defines a invariant bilinear form, from which the affine Lie algebra
ĝ is induced. Moreover, there is a homomorphism

Vĝ(ℓ, 0) → V,

where Vĝ(ℓ, 0) is the affine VOA induced by g with level ℓ, and ℓ is some particular number
determined by V . Therefore, we know that V is a Vĝ(ℓ, 0)-module, which means the well-
studied representation category, Vĝ(ℓ, 0)-Mod (or the corresponding intertwining operator
algebra), can be regarded as an ambient structure of V . We can use affine VOA (and its
representation theory) to study V . This has been a powerful tool in prove the uniqueness
theorem of the other 70 VOAs in the classification conjecture of holomorphic VOAs with
central charge 24. (The classification conjecture says that there are 71 such VOAs. All other
70, except for V ♮, have been proved to satisfy some uniqueness theorem.) It is useful because
for other 70 VOAs, their weight 1 space is nonzero, i.e. V(1) ̸= 0. However, in Conjecture 3.3
and 3.4, we have V(1) = 0, which makes this strategy invalid. This is the original reason for
the depth of FLM’s uniqueness conjecture of V ♮.

To overcome the difficulty mentioned above, our strategy is the following. Roughly
speaking, we want to use the category of twisted modules of V as the ambient structure.
Although the category V -Mod is trivial now, the category of g-twisted modules for some g ∈
G ≤ Aut(V ) should be a nontrivial G-crossed vertex tensor category. Since the moonshine
module V ♮ = V +

Λ ⊕ (V T
Λ )+ is constructed using the Leech lattice VOA VΛ and its twisted

module V T
Λ , if we consider the category of g-twisted V ♮-modules for g ∈ M = Aut(V ♮), it

should contain VΛ, by a particular procedure of orbifolding. Therefore, if we start with an
abstract VOA V satisfying conditions in Conjecture 3.4, the first step is to try to recover
VΛ in the M-crossed vertex tensor category garenteed by Conjecture 1.2. This is hopeful to
be done by using the uniqueness theorem for the Leech lattice VOA (Any VOA satisfying
conditions 1,2,3 in Theorem 1.1, conditions 1,3 in Conjecture 3.4, and also the condition
that V1 forms an abelian Lie algebra of rank 24, is isomorphic to VΛ). In this way, it woule
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be possible to get, from the abstract VOA V , an explicit VOA VΛ using twisted V -modules.
After realizing VΛ using the twisted V -module category, V is possible to be realized using
twisted VΛ-modules by reversing the orbifolding procedure mentioned above. Then it is
hopeful to use the well-understood orbifold theory of VΛ to study the uniqueness conjecture
3.4.

However, one of the hard problem for this strategy is to prove the existence of even one
nontrivial automorphism, because automorphisms are a piece of data we need to build the
orbifold theory. (Similar as above, if V(1) ̸= 0, it is not hard to construct some automor-
phisms. However, this is not the case for Conjecture 3.3/3.4.)
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